Possible behavior after ministep, simstep or twostep
Source:R/alternatives_beh.R
ts_alternatives_ministep_beh.Rd
ts_alternatives_ministep_beh()
constructs the possible future
behavior score after a ministep of ego
.
ts_alternatives_twostep_beh()
constructs the possible future behavioral
scores after two ministeps of two egos.
ts_alternatives_simstep_beh()
constructs all possible future behavioral
scores (over the complete range of the behavioral variable) of one ego.Ego is
thus allowed to jump from one extreme to the other
Usage
ts_alternatives_ministep_beh(beh, ego)
ts_alternatives_simstep_beh(beh, ego)
ts_alternatives_twostep_beh(beh, net, dist1 = NULL, modet1 = "degree")
Arguments
- beh
numerical, vector representing the behavioral scores actors.
- ego
numeric, value indicating ego (row number of net)
- net
matrix, the adjacency matrix representing the relations between actors. Valid values are 0 and 1.
- dist1
numeric, minimal path length between ego1 and ego2 at time1 in order to be allowed to start a coordination. If
NULL
all dyads are allowed to start a coordination (i.e. simultaneity).- modet1
string indicating the type of ties being evaluated at time1. "
degree
" considers all ties as undirected. "outdegree
" only allows directed paths starting from ego1 and ending at ego2. "indegree
" only allows directed paths starting from ego2 and ending at ego1. See:DETAILS
.
Examples
ccovar <- ts_prepdata(df_ccovar1)
ts_alternatives_ministep_beh(beh = ccovar[, "cov2"], ego = 3)
#> [[1]]
#> [1] 0.4 0.4 0.4 -0.6 1.4 -1.6 0.4 3.4 0.4 -5.6
#> attr(,"mean")
#> [1] 1.6
#> attr(,"simMean")
#> [1] 0.7234568
#> attr(,"range")
#> [1] 9
#> attr(,"range2")
#> [1] -4 5
#> attr(,"simij")
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] NA 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [2,] 1.0000000 NA 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [3,] 0.8888889 0.8888889 NA 0.7777778 1.0000000 0.6666667 0.8888889
#> [4,] 0.8888889 0.8888889 0.7777778 NA 0.7777778 0.8888889 0.8888889
#> [5,] 0.8888889 0.8888889 1.0000000 0.7777778 NA 0.6666667 0.8888889
#> [6,] 0.7777778 0.7777778 0.6666667 0.8888889 0.6666667 NA 0.7777778
#> [7,] 1.0000000 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 NA
#> [8,] 0.6666667 0.6666667 0.7777778 0.5555556 0.7777778 0.4444444 0.6666667
#> [9,] 1.0000000 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [10,] 0.3333333 0.3333333 0.2222222 0.4444444 0.2222222 0.5555556 0.3333333
#> [,8] [,9] [,10]
#> [1,] 0.6666667 1.0000000 0.3333333
#> [2,] 0.6666667 1.0000000 0.3333333
#> [3,] 0.7777778 0.8888889 0.2222222
#> [4,] 0.5555556 0.8888889 0.4444444
#> [5,] 0.7777778 0.8888889 0.2222222
#> [6,] 0.4444444 0.7777778 0.5555556
#> [7,] 0.6666667 1.0000000 0.3333333
#> [8,] NA 0.6666667 0.0000000
#> [9,] 0.6666667 NA 0.3333333
#> [10,] 0.0000000 0.3333333 NA
#>
#> [[2]]
#> [1] 0.4 0.4 1.4 -0.6 1.4 -1.6 0.4 3.4 0.4 -5.6
#> attr(,"mean")
#> [1] 1.6
#> attr(,"simMean")
#> [1] 0.7234568
#> attr(,"range")
#> [1] 9
#> attr(,"range2")
#> [1] -4 5
#> attr(,"simij")
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] NA 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [2,] 1.0000000 NA 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [3,] 0.8888889 0.8888889 NA 0.7777778 1.0000000 0.6666667 0.8888889
#> [4,] 0.8888889 0.8888889 0.7777778 NA 0.7777778 0.8888889 0.8888889
#> [5,] 0.8888889 0.8888889 1.0000000 0.7777778 NA 0.6666667 0.8888889
#> [6,] 0.7777778 0.7777778 0.6666667 0.8888889 0.6666667 NA 0.7777778
#> [7,] 1.0000000 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 NA
#> [8,] 0.6666667 0.6666667 0.7777778 0.5555556 0.7777778 0.4444444 0.6666667
#> [9,] 1.0000000 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [10,] 0.3333333 0.3333333 0.2222222 0.4444444 0.2222222 0.5555556 0.3333333
#> [,8] [,9] [,10]
#> [1,] 0.6666667 1.0000000 0.3333333
#> [2,] 0.6666667 1.0000000 0.3333333
#> [3,] 0.7777778 0.8888889 0.2222222
#> [4,] 0.5555556 0.8888889 0.4444444
#> [5,] 0.7777778 0.8888889 0.2222222
#> [6,] 0.4444444 0.7777778 0.5555556
#> [7,] 0.6666667 1.0000000 0.3333333
#> [8,] NA 0.6666667 0.0000000
#> [9,] 0.6666667 NA 0.3333333
#> [10,] 0.0000000 0.3333333 NA
#>
#> [[3]]
#> [1] 0.4 0.4 2.4 -0.6 1.4 -1.6 0.4 3.4 0.4 -5.6
#> attr(,"mean")
#> [1] 1.6
#> attr(,"simMean")
#> [1] 0.7234568
#> attr(,"range")
#> [1] 9
#> attr(,"range2")
#> [1] -4 5
#> attr(,"simij")
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7]
#> [1,] NA 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [2,] 1.0000000 NA 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [3,] 0.8888889 0.8888889 NA 0.7777778 1.0000000 0.6666667 0.8888889
#> [4,] 0.8888889 0.8888889 0.7777778 NA 0.7777778 0.8888889 0.8888889
#> [5,] 0.8888889 0.8888889 1.0000000 0.7777778 NA 0.6666667 0.8888889
#> [6,] 0.7777778 0.7777778 0.6666667 0.8888889 0.6666667 NA 0.7777778
#> [7,] 1.0000000 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 NA
#> [8,] 0.6666667 0.6666667 0.7777778 0.5555556 0.7777778 0.4444444 0.6666667
#> [9,] 1.0000000 1.0000000 0.8888889 0.8888889 0.8888889 0.7777778 1.0000000
#> [10,] 0.3333333 0.3333333 0.2222222 0.4444444 0.2222222 0.5555556 0.3333333
#> [,8] [,9] [,10]
#> [1,] 0.6666667 1.0000000 0.3333333
#> [2,] 0.6666667 1.0000000 0.3333333
#> [3,] 0.7777778 0.8888889 0.2222222
#> [4,] 0.5555556 0.8888889 0.4444444
#> [5,] 0.7777778 0.8888889 0.2222222
#> [6,] 0.4444444 0.7777778 0.5555556
#> [7,] 0.6666667 1.0000000 0.3333333
#> [8,] NA 0.6666667 0.0000000
#> [9,] 0.6666667 NA 0.3333333
#> [10,] 0.0000000 0.3333333 NA
#>